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Dynamics of a viscous liquid layer is considered in nonlinear formulation with al- 
lowance for capillary forces. The problem of propagation of a wave, induced by 
the reduced pressure at the layer boundary, into the layer is solved . 
The problem of perturbation propagation in a liquid layer was earlier considered 

in [l] in a linear formulation with allowance for capillary forces. 

Z. Statement of the problem. Let the thickness h of a viscous liquid layer 
contigrrcnts at least on one side to a gas vary along the characteristic distance I > h 

and let conditions h2 < YT and h% I (iv) (( ‘l where Y is the kinematic vis- 

cosity, z is the characteristic time of variation of h and B the velocity of liquid in 
the layer, be satisfied. Then the fiow of liquid Q tough a unit cross section of the 
layer differs only slightly from the steady flow in a flat slot [l]. 

Q =I - (?& / 3p)grad pI p = p. - @nbh, k = 1, ‘I4 (1.1) 

n = 1, ‘is 
where P is the dynamic viscosity, o is the coefficient of surface tension, and pres- 
sure p differs from the gas pressure p. by the capillar pressure. If one of the surfaces 
is tinded by a soljd body and the other is free, the parameter k in (1.1) is unity, and 
k = I/, when the tangential velocity is zero on both surfaces, which is possible in the 

presence of surface-active substances, Parameter Iz = 1 if the layer is bounded by a 

solid surface, and n = ‘1s when the ho boundaries are free. 

Adding to (1.X) the equation of mass conservation 

div Q + ah / dt = 0 
(1.2) 

we obtain, as in Cl], the equation for 12 (z, t) (5 is the coordinate along the layer). 
In the plane problem the equation is of the form 

okn 

%=F- 

(1.3) 

Solutions of a number of a number of problems related to this equation were investiga- 
ted in linear approximation in [I]. It is interesting to solve the following nonlinear 
boundary value problem (e. g., in connection with problems of coalescence of bubbles 
or the dynamics of foam films). 

Let the homogeneous in one direction layer of thickness k, 

P-tP@, h-+h,, 5+cx3 (X.4) 

be conti~~s to a region of constant reduced pressure (the meniscus), where p = p. 
- PO and, consequently, 

ma2h I a2 -f pa, X+-CO Cl* 51 
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In that region the layer thickness increases indefinitely 

h;2: a,z~+a,z+const-t..., Z-+--o3 

The coefficient a0 is simply expressed in terms of pressure drop pO. Specification 
of the second coefficient a, is primarily dependent on the fixing of the meniscus po- 
sition along the. x-axis. Selection of a, is here arbitrary, since in conformity with 
condition (1.4) the problem is considered with an accuracy to within the translation. 

We have to determine the asymptotic form of function h (x, $1 

t = O* 

when 
t --+ 00 which is independent of initial conditions at 

2, Self-similar solutfon,Let us consider the subsidiary problem which has 
a real physical meaning, Let instead of (1.5) the conditions 

/&=(), QZO, z-o 
(2*1) 

be satisfied. These conditions correspond to a compression of the layer to zero thickness 

at point 5 = 0. Since the parameter of length dimension is absent, a self-similar 
solution is possible in conformity with the theory of dimensions [2], It is of the form 

(2.2) 

h = h,Y (0, 5 == 5 (4Xh_&3@-‘~~ 

Equation 

P-3) 

corresponds to Eq. (1.3) and condition (1.4). 

Condition 

(2.4) 
y = 0, ryrf = 0, 5 = 0 

corresponds to condition (2.1) with allowance for (1.1). 
The behavior of solution of the boundary value problem (2.3), (2.4) when g --+ 00 

is of considerable interest. Investigation of the linearized equation (2.3) at the limit 

5 -+ 00. shows that the asymptotics of y depends on two constants or and 

% 

These two constants can be determined by satisfying two conditions (2.4). 
The asymptotics of solution of Eq. (2.3) that satisfy (2,4) for 5 -+o can be de- 

termined by the method of successive approximations 
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The simplest way of finding the constants b and d which appear in the last equ- 

ation is by taking into account the invariant transformation of Eq. (2.3) 

Y = 091, 5 = 051 
(2.6) 

The constants in (2.5) are transformed by formulas 

b = ij’lsb I, d = clr - In 8 

For b, = ‘i it is sufficient to use numerical calculations for solving Eq, (2.3), 

extend the asymptotics (2.5), and determine da, for which Y, +- ym = const when 

~300. The invariant transformation (2.6) with parameter 8 = ~~~‘4 

provides the solution of the input b~ndary value problem (2.3), (2.4). As the result we 

obtain b = 0.628, d = -6.70 
(2.7) 

The curve y (5) is shown in Fig. 1. 

4 

LJ 0 2 

Fig. 1 Fig. 2 

5. The approximate solution. In the region where the layer becomes 
a meniscus the variation of thickness h follows a parabola we seek an approximate 

solution of Eq. (1.3) that satisfies condition (I.. 5) and condition 

a% f 8x2 --f 0, 
(3.1) 

X--+-C= 

instead of condition (1.4). After that we carry out the joining. 
We integrate both sides of (1.3) fromx =I Sowhere the thickness is minimum 

(3.2) 

On the assumption (which is proved below) that _ 
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problem (3. It), (3.2), (1.5) can be reduced to the following form: 

(3.4) 

where functions Q* (1) and C (r) are SQ far arbitrary. Problem (3.4) has a sol- 
ution of the form 

h = f (t)!J f%), % = @ - GJ I t (0 (3.5) 

t = fnrr I ~~}q~~, f = bw i ~~~q~c2 

Constant QO and function Y (%) are determined by the solution of the boundary val- 
ue problem 

f3*6) 
ySy” =z -1; y”-+q,; %=+ -00; y’+l, %-+ +m 

When E-t 00 the asymptotics !, (%I is of the form 

(3.7) 

Y (%I = % - Ye In E + fi4%-x (In E i- %) t x/is~-2 (InB E -I- 
5/a In E + Vs61) -I- - . . 

The numerical solution of problem (3.6) with allowance for (3.7) makes it possible to 

determine Y 1%) (see Fig. 2) and, also, !70 and the minimum value of Y (%I 

(3.3) 
qo = 1.210, ymin = 1.259 

The minimum layer thickness &in and the flaw PO are 

(3.9) 

Using formulas (3.5) and asymptotics (3.7) we find that condition (3.3) is satisfied in 

region 
(3.10) 

It will be seen from (3, ‘7) or Fig. 2 and the similar asymptotic re resentation for 

% -+ - co. that the scale of the obtained solution is t % - ii 1 - 4 or 

I z - l* 1 N I. Taking this into account, from (3.5) and (3.15) we obtain the 
following condition of the existence of the derived approximate soWion: 

~W&+>~qoj~/dtI (3.11) 



4, Dynamics af a semi-infinite layer. The solutions derived in 
Sections 2 and 3 make it possible to constrhct the combined sohtim of the problem fo- 
rmulated in Section 1. We introduce the intermediate scale A 

As 1 & I dt 1 = 2~*~~~, N = r@s I PSJ 

in which 00 and the integral in (3.2) are of the same order, 
the quantity i& in (3.2) is negligibly small t and condition (2.1) is valid at point 
Z= $0, * If furthermore 

(4*2) 
5 - go < & c ~~~~S~~~4, 20 = 0 

where L is the s&e of the self-similar solution (2.2), then the asymptotic repre- 
sentation (2-5) is valid, Joining the&at terms of the two asymptotic ~presentat~ons of 

h by formulas (3.7), (3,5), (2.5), and (2,2) and allowing for (2.7) and (3. S), we 
obtain 

As the result we have the composite solutiou that in reg$m r - %I 2S= h 

is deter~ued by formula (2.2) and in region t - G<~ by formula 
(3.5). The parameters of solution (3.5) and (3,9) are as follows: 

(4.4) 

where I is the characteristic scale of the transition region between the nonlinear 
wave (2.2) and the meniscus h miu 

b 
is the minimum thickness, and the constants 401 

and #MI are determined by (2.7) and (3.8). The obtained solution is diag- 
rammatically represented in Fig. 3 for the consecutive instants of time 1, 2, 3. 
Simultaneousfy with the penetration of the wave into the layer in conformity with the 
law L _ t’s the layer thickness in the ~n~uous~y na~ow~ng 
boundary region decreases pro~orti~a~~y to Pa. 

(I - f-Q). 

Fig. 3 
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The condition of validity of solution obtained in Section 2 consists of the existence 

of region (4.2). The inequality (4.2) is possible when L > A. From (4. Q-(4.3) fo- 
llows the condition 

It can be shown that condition (3.11) of validity of solution obtained in Sect. 3 is si- 
multaneously satisfied. 

5. The film of finite dimensions, Let a round film of radius r 
be conti~~s to the meniscus along its circumference in which the pressure is reduced 

bY Pa as compared to the pressure of gas. At the initial instant t = 0 the film 
is of uniform thickness. It is obvious that at instants of time at which the scale L of 
the wave induced by the lower pressure at the border is considerably smaller than the fi- 

lm radius r the problem of the film dynamics reduces to the plane problem whose so- 
lution was obtained above. The condition L - r yields the characteristic time + 

/5.1) 

z = r4 / (4xhw3) 

taken for the film to commence thinning at its center from the beginning of the process, 

Formula (5.1) is the same, except for the unimportant numerical multiplier, as the 

similar formula for the time during which a per~rbation in the layer propagates over di- 

stance .r obtained in fl]. 

For t==:z the minimum thickness at the film borders is of order 

(5.2) 

&in z (r~ / pb)0.6 hm2 I r2 

It can be expected that at instants of time t > z the pressure in the film at dist- 

ances of the order of r varies slightly, the wave degenerates, and the solution is cl- 

ose to 

h = ho (t) (4 - z2 / r2) 

where .Z is the distance from the center of the fiIm. A particular solution of Eqs.(l. 1) 

and (1.2) close to (5.3) is possible if 

(5.4) 

From (1. 1) and (1. 2) follows 

n 

At the film border at z s r the scale of thickness variation is 1 < f and in the 

left-hand side of Eq.(5,5) the derivative T 

.X -3r---z (5.6) 
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is the principal term. The boundary condition with allowance for (5.3) is of the form 

d2h I ax2 + 0, dh/dx+2h,f r, x-+-c- 
(5.7) 

The problem (5.6). (5.7), (1.5) of determination of the transition region between 

the film and the meniscus is equivalent to the boundary value problem (3.4). The point 

at which thickness h has its minimum is z = r hence 5, = 0. The in- 

tegral in (5.6) is calculated with asymptotic accuracy with the use of (5.3). Taking in- 

to account formulas (3.9) we obtain 

(5.8) 

where parameters Qo and Yrnin are determined in (3.8), and by its order of magn- 

itude formula (5.8) corresponds to (5.2). Condition (5.4) is satisfied when pdr2 > 
h,o. 

In the region of considerable b, which includes the meniscus, the free surface is 

determined by equations of equilibrium, In a particular case the free surface outside 

the film and the transition region of dimension _ l can be a sphere of radius R. 

In that case PO z 20 / R. If furthermore the case is restricted to a liquid lay- 

er bordering on a solid surface (x = G / 3u, n -= I), then formulas (5.8) are cl- 

oser to the similar formulas in [3] derived on intuitive considerations. 

It is not possible to agree with the assertions in [4] about the errors of the authors of 

paper [3]. On the contrary it is paper [4] that is erroneous. 
An attempt was made in [4] to formulate some iterative method of solving equat- 

ions of thin layer dynamics. If the equation for h is presented in the form ‘Ah = 

dh / a, where A is a differential operator which depends only on cooidinates, 

that method can be briefly written as 
h, = f it). 

Ahk+, =dh,lat.k=O.l.... The zero a- 

pproximation is defined by The authors confine themselves to the cal- 

culation of parameter hl and identify this with the approximate solution. 

Such method of solution is erroneous for the following reasons. 

First, that method stipulates unconditionally that function k which is being approx- 

imated must a fortiori differ only slightly from h, = f (t)v in particular, because 

only the first approximation is used. This means that the layer thickness must vary on- 
ly slightly along the coordinates. However, the authors endeavor to analyze problems 
in which h varies substantially along the coordinates. 

Second, the authors of [4] stress that the fundamental equation of their investigation, 
which can be briefly presented in the form Ah, F ah, / at E af I at, can be con- 
sidered as obtained on the simplifying assumption that the radial flow Q (t, r) = 
a (t) r. But this is a wrong assumption. Section 5 of the present work clearly shows 
that 0 (t, r) = 11% (dh, I at) (9 / 21’ - r). since the film is close to a lens (5.3) 
and not to a plane-parallel layer. 

Third, the fundamental wave properties of solutions are completely lost in the me- 
thod [4] with the result that thickness perturbations of the thin macroscopic layer pro- 

pagate very slowly along it [l]. Investigations [S] contradict the exact results in [l] 
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obtained in linear approximation. In particular, the thinning of the plane-parallel layer 
must begin at the borders. While according to [4] it begins right at the center of the lay- 
er. This erroneous result is due only to the incorrect method [4]. 

The region of validity of the hydr~ynamic theory is bounded by film of macroscop- 

ic thickness. The possibility of hydrodynamic formulation is lost when h - 10e6 cm. 
For films of thickness h< 10-s cm the van der Waals forces must be taken into ac- 
count. 

The solutions obtained above are valid for investigating the problem of film destr- 

uction. In the absence of electrostatic repulsion of surface layers when &in - 
10m6 WI the liquid will rapidly flow out from the region of minimum thickness under 

the action of van der Waals forces, and the film is destroyed in that narrow boundary 

region similarly to [5& 
The author thanks V. V. Struminskii for discussing the results of this work. 
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